

In-Camera All-Digital Video Stabilization
Aaron Deever; Eastman Kodak Company; Rochester, NY

Abstract
Video sequences captured with hand-held digital still cameras

often contain unwanted motion caused by hand jitter. In this
paper, we investigate the problem of video stabilization, and in
particular, focus on in-camera, all-digital video stabilization.
Algorithms for global camera motion estimation and jitter
calculation are proposed. Computational constraints imposed by
an in-camera solution are also discussed.

Introduction
Many digital cameras are capable of capturing video

sequences as well as still images. These video sequences often
contain unwanted motion caused by hand jitter. This unwanted
motion is distracting, and can also reduce visual quality and
encoding efficiency.

Several different approaches to jitter removal exist, ranging
from optical to electronic to digital. Optical solutions may use an
oscillating gyroscope and rotating prism lens as part of a
mechanism to detect and correct for angular velocity in the camera
[1]. Although effective at stabilization and at reducing motion
blur, optical stabilization increases camera cost.

Stabilization may also be achieved electronically through the
use of motion-sensing transducers, which detect actual camera
motion. The jitter component of this motion can be computed and
compensated for by selecting an appropriately offset region from
an oversized CCD or CMOS imaging plane [1].

Stabilization can also be accomplished entirely in the digital
domain. With digital stabilization, true camera motion must be
estimated from the captured video stream. This approach has low
cost because it is entirely algorithmic and is implementable as a
firmware solution. It encounters increased performance challenges
relative to optical or electronic stabilization, however, because the
computational resources available for stabilization are usually
limited, and camera motion estimation from arbitrary video
sequences can often be confused by content.

The workflow for digital stabilization is shown in Figure 1.
The first step is to estimate the motion between frames. This is
followed by trajectory estimation, which computes an estimate of
the desired camera motion (e.g., a panning motion). Jitter is
estimated based on the overall motion and desired camera motion
estimates, and is then compensated for through an image shift or
warp function.

Motion

Estimation

Trajectory

& Jitter

Estimation

Image

Shift / Warp

Input

Image

Sequence

Output

Image

Sequence

Figure 1. The workflow of a typical digital video stabilization algorithm.

Digital stabilization can be performed using software off-line
after a video sequence has been captured. This approach has the
advantage that significant computational resources can be applied
to the problem, allowing sophisticated motion estimation and jitter
correction algorithms. Off-line stabilization has several
disadvantages, however. It may introduce additional artifacts
caused by multiple compression/decompression cycles, and also
results in the loss of some image resolution. Off-line stabilization
also requires an extra step of user interaction, which increases
overall complexity. In this paper, we focus on in-camera,
firmware-based stabilization, in which the captured video data is
stabilized prior to compression and storage.

Of initial importance in a stabilization solution is deciding
how the final crop and/or warp will be performed, because this
decision affects the motion estimation models that may be
considered. Usually the image information is stored in a buffer
that is arranged in raster scan fashion. The easiest way to move
this data around is to perform an integer shift of the data
horizontally and vertically. This shift introduces no distortions in
the image data and can be done very quickly. A more complicated
adjustment might be a noninteger shift horizontally and vertically,
requiring an interpolation step. This can result in blurred edges
and is more expensive to compute. There are increasingly
complicated transformations such as affine or perspective
transforms that would also require a warp of the entire frame.
Non-real-time software systems have the luxury of using these
motion models, but digital still cameras often spend most of their
compute cycles in video mode with compression tasks; therefore,
limited resources are available for stabilization.

Another major point of practical consideration is whether the
stabilization algorithm is performed on Bayer data directly from
the image sensor, or on YCbCr data after some image processing
has taken place. Bayer data is typically of higher resolution than
the subsequent YCbCr data, and thus offers the opportunity for
finer precision stabilization. This issue does not directly affect the
stabilization algorithms, however. Typically, motion estimation
algorithms operate on luminance data. With Bayer data, these
algorithms could easily be applied to the green image data instead.
The computational cost of storing and manipulating high-
resolution CFA data can be prohibitive, however.

In order to allow for jitter correction, it is desirable to have an
image sensor providing data with a larger area than will be saved
in the video sequence. This concept is illustrated in Figure 2, in
which the video resolution is less than the resolution captured by
the image sensor, such that a buffer zone exists both horizontally
and vertically. This allows the stabilization algorithm to extract an
appropriately shifted portion of the image sensor data, based on the
computed translational jitter.

Sensor Image

Output Image

Horizontal

Buffer

Zone

Horizontal

Buffer

Zone

Vertical

Buffer

Zone

Vertical

Buffer

Zone

Figure 2. The buffer zone concept for an image with a larger sensor area
than will be saved in the video sequence.

Note that there is a limit to the amount of jitter that can be
compensated before reaching the edge of the image sensor data.

While it is preferred to have an image sensor with greater
resolution than the final video sequence, it is possible to perform
digital stabilization in the case that the image sensor does not
provide any buffer zones. In this scenario, a shrunken region of
the image sensor is treated as the desired video resolution, and
stabilization is performed as illustrated in Figure 2. Subsequently,
the shrunken video sequence can be interpolated back to the
original image sensor resolution. The interpolation step increases
complexity, however, and also may degrade image quality.

In the remainder of this paper, we assume that the final image
shift will be restricted to an integer translational offset, and focus
on the remaining aspects of the stabilization algorithm: motion
estimation and jitter calculation. In the next section, we briefly
review motion stabilization techniques. This is followed by a
description of an algorithm for jitter calculation. Experiments and
results are subsequently detailed, and a summary completes the
paper.

Motion Estimation
The majority of previous work in digital stabilization utilizes

some form of block-matching for motion estimation. Block-
matching involves dividing an image into a collection of blocks,
and for each block finding the best matching block in the previous
image. A general overview of block-matching for motion
estimation can be found in [2]. When exhaustive searches are used
to find the best match for each block, this technique is
prohibitively complex. Several improvements can be incorporated
to improve the efficiency of this algorithm, however. Hierarchical
searches perform a coarse-to-fine estimate of the motion, and only
require that a fraction of the potential solutions be considered.
Gray-coded bit planes and edge maps have been proposed as
methods by which to convert 8-bit image data into a single bit for
each pixel [3,4]. These approaches allow blocks to be compared
through bit operations rather than through more expensive
subtraction operations.

Once a motion estimate has been obtained for each block, a
set of rules must be applied to convert these local estimates into a
single global estimate of the motion. Because block-based motion
estimation obtains local motion estimates from different regions

throughout the image, it can be very robust to independent moving
objects within a scene. Local estimates may be eliminated if they
are considered unreliable due to causes such as the block
containing repeating patterns or very few edges [5]. Once the
local estimates have been pruned such that only reliable estimates
remain, typically the median or mean is chosen as the global
motion estimate [6].

As an alternative to block-based motion estimation, the
technique of integral projections can be used to obtain a fast,
robust estimate of the dominant global translational motion
between two frames [7,8]. Integral projections operate by
projecting a two-dimensional image onto two one-dimensional
vectors: one horizontal and one vertical. This is achieved by
summing the elements in each column to form a vertical projection
(used to compute the horizontal motion estimate), and by summing
the elements in each row to form a horizontal projection (used to
compute the vertical motion estimate), as illustrated in Figure 3.
This process is repeated for a second image as well.

Σ

Horizontal
projection

Image

Vertical projection

Figure 3. Integral projections. The two-dimensional image is converted into
two one-dimensional projection vectors by summing along rows, and down
columns.

The vertical projection vectors from the two images are
correlated to find the offset providing the best match. Typically an
L1-norm (sum of absolute differences) is used as the error metric,
and the offset with the lowest error is chosen as the horizontal
motion between the two frames. The process is repeated
independently with the horizontal projection vectors to determine a
vertical motion estimate.

Computational speedups are possible using two varieties of
subsampling. The first subsampling reduces the number of
samples included when summing a given row or column. Usually
it is desirable to have at least 100 samples included in each sum, if
possible. Excessive subsampling can result in aliasing that
decreases the accuracy of the motion estimate. The second
subsampling involves reducing the precision of the motion
estimation by only summing data for a subset of the rows or
columns. Some precision can be reacquired by interpolating the
derived projection vectors prior to correlating them at various
offsets. Normally this subsampling is restricted to a factor of two,
which is recovered by interpolation of the projection vectors.

Jitter Calculation
Once a motion estimate has been computed, it remains to

determine what component of that motion is desired, because of a
camera pan, for example, and what component of the motion is
caused by camera jitter. In the simple case when the desired
motion is known to be zero, all of the estimated motion can be
treated as jitter and removed from the sequence. In general,
however, there may be some desired camera motion along with the
undesirable camera jitter. Typically it is assumed that any desired
camera motion is of very low frequency, no more than 1 or 2 Hz.
Many studies have shown hand shake to commonly occur between
2–10 Hz [9,10]. Low-pass temporal filtering can thus be applied
to the motion estimates to eliminate the high-frequency jitter
information while retaining any intentional low-frequency camera
motion.

In addition to having a specific frequency response that
eliminates high-frequency jitter information, the ideal low-pass
filter for video stabilization also needs to have minimal phase
delay. Ideally, a symmetric, zero-phase linear filter is used for
stabilization. For a given frame being stabilized, however, this
requires motion estimates from both previous frames and future
frames. This is possible for stabilization applications that are run
off-line. For in-camera stabilization, however, some phase delay
is unavoidable. This is a result of the constraint that the stabilized
video should be displayed on the back of the camera with minimal
time lag. This necessitates causal filtering, which results in non-
zero phase delay.

Most previous work in filter design for stabilization has
derived from the work of Uomori [10]. In his work, Uomori
combined the steps of filtering and jitter accumulation into one
formula, given by the equation:

[] [] []nvnAnA +−= 1α , (1)

where A[n] is the accumulated jitter for frame n, v[n] is the
computed motion estimate for frame n, and α is a dampening
factor with a value between 0 and 1 that is used to steer the
accumulated jitter toward 0 when there is no motion. Note that the
accumulated jitter is tracked separately for the x direction and y
direction, and the term v[n] generically represents motion in either
direction.

Although Uomori describes the different frequency responses
that can be achieved through this system by varying the value of α,
neither his work nor any of the subsequent papers adequately
describe the phase response of the system. It turns out that the
phase delay is suboptimal, and can be improved by analyzing and
modifying the formula given by Equation (1).

Let A and v be defined as above, and let s be the smoothed
motion estimate, defined as the original motion estimate minus the
computed jitter. Then

[] [] [] []()1−−−= nAnAnvns , (2)

where A[n]-A[n-1] represents the individual jitter for frame n
relative to frame n-1. Thus:

[] [] [] [] []()
() []11

11

−−=
−−+−−=

nA

nAnvnAnvns

α
α

. (3)

Then a recursion formula for s is given by the following:

[] () []
()()

()]1[1]1[

]1[]2[1

11

−−+−=
−+−−=

−−=

nvns

nvnA

nAns

αα
αα

α
. (4)

In this equation, the smoothed motion estimate for frame n is
independent of the original motion estimate for frame n. It relies
only on the previous smoothed motion estimate as well as the
original motion estimate for frame n – 1. This introduces an
unnecessary phase delay in the filter. A filter with identical
frequency response but improved phase response can be
constructed by simply using the current motion estimate when
forming the smoothed estimate:

[] [] () []nvnsns αα −+−= 11 . (5)

It can be shown that this filter results in the accumulation
formula:

[] [] []nvnAnA αα +−= 1 . (6)
A comparison of the phase responses for the original Uomori

and improved filters is illustrated in Figure 4.

Figure 4. Phase response for Uomori and improved filters. 30 frames per
second is assumed, so that the maximum frequency is 15 Hz.

As will be shown in the following section, the improved
accumulation formula given by Equation (6) does a better job of
retaining intentional panning motion, and results in decreased
accumulated jitter. Visually, the improved accumulation formula
corresponds to less of a trailing effect in the jitter-corrected video
when an intentional pan occurs.

The accumulated jitter is clipped according to the maximum
available buffer area of the image sensor. This clipping is
necessary because of the limited size of the sensor, but is desirable
even without this constraint to prevent the jitter-corrected video
from falling too far behind during an intentional pan, as a result of
phase-delay misclassification of motion as jitter.

Experiments and Results
Simulations were performed on a QVGA-resolution video

captured at an indoor hockey rink. The video contained significant
panning motion as well as jitter. Figure 5 shows the effect of the

improved phase response filter on the accumulated horizontal jitter
for the sequence.

Figure 5. Accumulated horizontal jitter for the hockey video sequence,
based on the accumulation formula given in Uomori, and compared to the
improved accumulation formula with reduced phase delay. The improved
accumulation formula did a better job of identifying intentional panning
motion, and resulted in reduced accumulated jitter.

The improved filter performed particularly better in regions
of panning motion, during which some motion was misclassified
as jitter.

Figure 6 illustrates the general ability of the stabilization
algorithm to remove jitter from the sequence. In this figure, only
the first 100 frames of the hockey video sequence were considered,
corresponding to a period of little intentional motion.

Figure 6. Horizontal motion estimation for the first 100 frames of the hockey
sequence. The original motion estimate was restricted to pixel accuracy,
based on subsampling of the projection vector precision by a factor of 2,
followed by interpolation to reacquire pixel precision. The smoothed
estimate of the motion was obtained using the improved version of Uomori’s
recursive filter.

The numerical jitter removal illustrated in Figure 6
corresponded to a stabilized video with significantly improved
visual quality.

Although for brevity additional results are not described in
detail, the proposed stabilization algorithm was successful at
reducing jitter and improving visual quality for a variety of video
sequences.

Summary
In this paper we discuss motion estimation and filtering

algorithms for digital video stabilization, and in particular, derive a
causal filter with improved phase response relative to existing
approaches. We also discuss trade-offs associated with performing
stabilization in-camera versus off-line stabilization of a previously
encoded video sequence.

References
[1] B. Schweber, “How It Works: Image Stabilization Shows Diversity of

Engineering Approaches,” www.ednmag.com, October 26, 2000.
[2] C. Stiller and J. Konrad, “Estimating Motion in Image Sequences,”

Signal Processing Magazine, pp. 70 (1999).
[3] S.J. Ko et al., IEEE Transactions on Consumer Electronics, 45(3), pg.

598 (1999).
[4] J. Paik, Y. Park and D. Kim, IEEE Transactions on Consumer

Electronics, 38(3), pg. 607 (1992).
[5] J. Paik, Y. Park, and S. Park, IEEE Transactions on Consumer

Electronics, 37(3), pg. 521 (1991).
[6] K.S. Choi et al., International Conference on Consumer Electronics,

pg. 246 (2000).
[7] K. Ratakonda, IEEE International Symposium on Circuits and

Systems, 4, pg. 69 (1998).
[8] K. Sauer and B. Schwartz, IEEE Transactions on Circuits and Systems

for Video Technology, 6(5), pg. 513 (1996).
[9] R. Stiles, Journal of Applied Physiology, 40(1), pg. 44 (1976).
[10] K. Uomori et al., IEEE Transactions on Consumer Electronics, 36(3),

pg. 510 (1990).

Author Biography
Aaron Deever received his B.S. degree in mathematics and computer

science from The Pennsylvania State University, and a Ph.D. degree in
applied mathematics from Cornell University. He is currently a Research
Scientist at Eastman Kodak Company, Rochester, NY, where he works on
image and video processing applications.

	33674
	33675
	33676
	33677
	33678
	33679
	33680
	33681
	33682
	33683
	33684
	33685
	33686
	33687
	33688
	33689
	33690
	33691
	33692
	33693
	33694
	33695
	33696
	33697
	33698
	33699
	33700
	33701
	33702
	33703
	33704
	33705
	33706
	33707
	33708
	33709
	33710
	33711
	33712
	33713
	33714
	33715
	33716
	33717
	33718
	33719
	33720
	33721
	33722
	33723
	33724
	33725
	33726
	33727
	33728
	33729
	33730
	33731
	33732
	33733
	33734
	33735
	33736
	33737
	33738
	33739
	33740
	33741
	33742
	33743
	33744
	33745
	33746
	33747
	33748
	33749
	33750
	33751
	33752
	33753
	33754
	33755
	33756
	33757
	33758
	33759
	33760
	33761
	33762
	33763
	33764
	33765
	33766
	33767
	33768
	33769
	33770
	33771
	33772
	33773
	33774
	33775
	33776
	33777
	33778
	33779
	33780
	33781
	33782
	33783
	33784
	33785
	33786
	33787
	33788
	33789
	33790
	33791
	33792
	33793
	33794
	33795
	33796
	33797
	33798
	33799
	33800
	33801
	33802
	33803
	33804
	33805
	33806
	33807
	33808
	33809
	33810
	33811
	33812
	33813
	33814
	33815
	33816
	33817
	33818
	33819
	33820
	33821
	33822
	33823
	33824
	33825
	33826
	33827
	33828
	33829
	33830
	33831
	33832
	33833
	33834
	33835
	33836
	33837
	33838
	33839
	33840
	33841
	33842
	33843
	33844
	33845
	33846
	33847
	33848
	33849
	33850
	33851
	33852
	33853
	33854
	33855
	33856
	33857
	33858
	33859
	33860

