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Abstract 
Video sequences captured with hand-held digital still cameras 

often contain unwanted motion caused by hand jitter.  In this 
paper, we investigate the problem of video stabilization, and in 
particular, focus on in-camera, all-digital video stabilization.  
Algorithms for global camera motion estimation and jitter 
calculation are proposed.  Computational constraints imposed by 
an in-camera solution are also discussed. 

Introduction  
Many digital cameras are capable of capturing video 

sequences as well as still images.  These video sequences often 
contain unwanted motion caused by hand jitter.  This unwanted 
motion is distracting, and can also reduce visual quality and 
encoding efficiency. 

Several different approaches to jitter removal exist, ranging 
from optical to electronic to digital.  Optical solutions may use an 
oscillating gyroscope and rotating prism lens as part of a 
mechanism to detect and correct for angular velocity in the camera 
[1].  Although effective at stabilization and at reducing motion 
blur, optical stabilization increases camera cost. 

Stabilization may also be achieved electronically through the 
use of motion-sensing transducers, which detect actual camera 
motion.  The jitter component of this motion can be computed and 
compensated for by selecting an appropriately offset region from 
an oversized CCD or CMOS imaging plane [1]. 

Stabilization can also be accomplished entirely in the digital 
domain.  With digital stabilization, true camera motion must be 
estimated from the captured video stream.  This approach has low 
cost because it is entirely algorithmic and is implementable as a 
firmware solution.  It encounters increased performance challenges 
relative to optical or electronic stabilization, however, because the 
computational resources available for stabilization are usually 
limited, and camera motion estimation from arbitrary video 
sequences can often be confused by content. 

The workflow for digital stabilization is shown in Figure 1.  
The first step is to estimate the motion between frames.  This is 
followed by trajectory estimation, which computes an estimate of 
the desired camera motion (e.g., a panning motion).  Jitter is 
estimated based on the overall motion and desired camera motion 
estimates, and is then compensated for through an image shift or 
warp function.   

Motion

Estimation

Trajectory

& Jitter

Estimation

Image

Shift / Warp

Input

Image

Sequence

Output

Image

Sequence

 
Figure 1.  The workflow of a typical digital video stabilization algorithm. 

Digital stabilization can be performed using software off-line 
after a video sequence has been captured.  This approach has the 
advantage that significant computational resources can be applied 
to the problem, allowing sophisticated motion estimation and jitter 
correction algorithms.  Off-line stabilization has several 
disadvantages, however.  It may introduce additional artifacts 
caused by multiple compression/decompression cycles, and also 
results in the loss of some image resolution.  Off-line stabilization 
also requires an extra step of user interaction, which increases 
overall complexity.  In this paper, we focus on in-camera, 
firmware-based stabilization, in which the captured video data is 
stabilized prior to compression and storage. 

Of initial importance in a stabilization solution is deciding 
how the final crop and/or warp will be performed, because this 
decision affects the motion estimation models that may be 
considered.  Usually the image information is stored in a buffer 
that is arranged in raster scan fashion.  The easiest way to move 
this data around is to perform an integer shift of the data 
horizontally and vertically.  This shift introduces no distortions in 
the image data and can be done very quickly.  A more complicated 
adjustment might be a noninteger shift horizontally and vertically, 
requiring an interpolation step.  This can result in blurred edges 
and is more expensive to compute.  There are increasingly 
complicated transformations such as affine or perspective 
transforms that would also require a warp of the entire frame.  
Non-real-time software systems have the luxury of using these 
motion models, but digital still cameras often spend most of their 
compute cycles in video mode with compression tasks; therefore, 
limited resources are available for stabilization. 

Another major point of practical consideration is whether the 
stabilization algorithm is performed on Bayer data directly from 
the image sensor, or on YCbCr data after some image processing 
has taken place.  Bayer data is typically of higher resolution than 
the subsequent YCbCr data, and thus offers the opportunity for 
finer precision stabilization.  This issue does not directly affect the 
stabilization algorithms, however.  Typically, motion estimation 
algorithms operate on luminance data.  With Bayer data, these 
algorithms could easily be applied to the green image data instead.  
The computational cost of storing and manipulating high-
resolution CFA data can be prohibitive, however. 

In order to allow for jitter correction, it is desirable to have an 
image sensor providing data with a larger area than will be saved 
in the video sequence.  This concept is illustrated in Figure 2, in 
which the video resolution is less than the resolution captured by 
the image sensor, such that a buffer zone exists both horizontally 
and vertically.  This allows the stabilization algorithm to extract an 
appropriately shifted portion of the image sensor data, based on the 
computed translational jitter. 
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Figure 2.  The buffer zone concept for an image with a larger sensor area 
than will be saved in the video sequence. 

Note that there is a limit to the amount of jitter that can be 
compensated before reaching the edge of the image sensor data. 

While it is preferred to have an image sensor with greater 
resolution than the final video sequence, it is possible to perform 
digital stabilization in the case that the image sensor does not 
provide any buffer zones.  In this scenario, a shrunken region of 
the image sensor is treated as the desired video resolution, and 
stabilization is performed as illustrated in Figure 2.  Subsequently, 
the shrunken video sequence can be interpolated back to the 
original image sensor resolution.  The interpolation step increases 
complexity, however, and also may degrade image quality.   

In the remainder of this paper, we assume that the final image 
shift will be restricted to an integer translational offset, and focus 
on the remaining aspects of the stabilization algorithm:  motion 
estimation and jitter calculation.  In the next section, we briefly 
review motion stabilization techniques.  This is followed by a 
description of an algorithm for jitter calculation.  Experiments and 
results are subsequently detailed, and a summary completes the 
paper. 

Motion Estimation 
The majority of previous work in digital stabilization utilizes 

some form of block-matching for motion estimation.  Block-
matching involves dividing an image into a collection of blocks, 
and for each block finding the best matching block in the previous 
image.  A general overview of block-matching for motion 
estimation can be found in [2].  When exhaustive searches are used 
to find the best match for each block, this technique is 
prohibitively complex.  Several improvements can be incorporated 
to improve the efficiency of this algorithm, however.  Hierarchical 
searches perform a coarse-to-fine estimate of the motion, and only 
require that a fraction of the potential solutions be considered.  
Gray-coded bit planes and edge maps have been proposed as 
methods by which to convert 8-bit image data into a single bit for 
each pixel [3,4].  These approaches allow blocks to be compared 
through bit operations rather than through more expensive 
subtraction operations. 

Once a motion estimate has been obtained for each block, a 
set of rules must be applied to convert these local estimates into a 
single global estimate of the motion.  Because block-based motion 
estimation obtains local motion estimates from different regions 

throughout the image, it can be very robust to independent moving 
objects within a scene.  Local estimates may be eliminated if they 
are considered unreliable due to causes such as the block 
containing repeating patterns or very few edges [5].  Once the 
local estimates have been pruned such that only reliable estimates 
remain, typically the median or mean is chosen as the global 
motion estimate [6]. 

As an alternative to block-based motion estimation, the 
technique of integral projections can be used to obtain a fast, 
robust estimate of the dominant global translational motion 
between two frames [7,8].  Integral projections operate by 
projecting a two-dimensional image onto two one-dimensional 
vectors:  one horizontal and one vertical.  This is achieved by 
summing the elements in each column to form a vertical projection 
(used to compute the horizontal motion estimate), and by summing 
the elements in each row to form a horizontal projection (used to 
compute the vertical motion estimate), as illustrated in Figure 3.  
This process is repeated for a second image as well. 
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Figure 3.  Integral projections.  The two-dimensional image is converted into 
two one-dimensional projection vectors by summing along rows, and down 
columns. 

The vertical projection vectors from the two images are 
correlated to find the offset providing the best match.  Typically an 
L1-norm (sum of absolute differences) is used as the error metric, 
and the offset with the lowest error is chosen as the horizontal 
motion between the two frames.  The process is repeated 
independently with the horizontal projection vectors to determine a 
vertical motion estimate. 

Computational speedups are possible using two varieties of 
subsampling.  The first subsampling reduces the number of 
samples included when summing a given row or column.  Usually 
it is desirable to have at least 100 samples included in each sum, if 
possible.  Excessive subsampling can result in aliasing that 
decreases the accuracy of the motion estimate.  The second 
subsampling involves reducing the precision of the motion 
estimation by only summing data for a subset of the rows or 
columns.  Some precision can be reacquired by interpolating the 
derived projection vectors prior to correlating them at various 
offsets.  Normally this subsampling is restricted to a factor of two, 
which is recovered by interpolation of the projection vectors. 

  



 

 

Jitter Calculation 
Once a motion estimate has been computed, it remains to 

determine what component of that motion is desired, because of a 
camera pan, for example, and what component of the motion is 
caused by camera jitter.  In the simple case when the desired 
motion is known to be zero, all of the estimated motion can be 
treated as jitter and removed from the sequence.  In general, 
however, there may be some desired camera motion along with the 
undesirable camera jitter.  Typically it is assumed that any desired 
camera motion is of very low frequency, no more than 1 or 2 Hz.  
Many studies have shown hand shake to commonly occur between 
2–10 Hz [9,10].  Low-pass temporal filtering can thus be applied 
to the motion estimates to eliminate the high-frequency jitter 
information while retaining any intentional low-frequency camera 
motion. 

In addition to having a specific frequency response that 
eliminates high-frequency jitter information, the ideal low-pass 
filter for video stabilization also needs to have minimal phase 
delay.  Ideally, a symmetric, zero-phase linear filter is used for 
stabilization.  For a given frame being stabilized, however, this 
requires motion estimates from both previous frames and future 
frames.  This is possible for stabilization applications that are run 
off-line.  For in-camera stabilization, however, some phase delay 
is unavoidable.  This is a result of the constraint that the stabilized 
video should be displayed on the back of the camera with minimal 
time lag.  This necessitates causal filtering, which results in non-
zero phase delay. 

Most previous work in filter design for stabilization has 
derived from the work of Uomori [10].  In his work, Uomori 
combined the steps of filtering and jitter accumulation into one 
formula, given by the equation: 

[ ] [ ] [ ]nvnAnA +−= 1α , (1) 

where A[n] is the accumulated jitter for frame n, v[n] is the 
computed motion estimate for frame n, and α is a dampening 
factor with a value between 0 and 1 that is used to steer the 
accumulated jitter toward 0 when there is no motion.  Note that the 
accumulated jitter is tracked separately for the x direction and y 
direction, and the term v[n] generically represents motion in either 
direction.   

Although Uomori describes the different frequency responses 
that can be achieved through this system by varying the value of α, 
neither his work nor any of the subsequent papers adequately 
describe the phase response of the system.  It turns out that the 
phase delay is suboptimal, and can be improved by analyzing and 
modifying the formula given by Equation (1). 

Let A and v be defined as above, and let s be the smoothed 
motion estimate, defined as the original motion estimate minus the 
computed jitter.  Then 

[ ] [ ] [ ] [ ]( )1−−−= nAnAnvns , (2) 

where A[n]-A[n-1] represents the individual jitter for frame n 
relative to frame n-1.  Thus:  
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Then a recursion formula for s is given by the following: 
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In this equation, the smoothed motion estimate for frame n is 
independent of the original motion estimate for frame n.  It relies 
only on the previous smoothed motion estimate as well as the 
original motion estimate for frame n – 1.  This introduces an 
unnecessary phase delay in the filter.  A filter with identical 
frequency response but improved phase response can be 
constructed by simply using the current motion estimate when 
forming the smoothed estimate: 

[ ] [ ] ( ) [ ]nvnsns αα −+−= 11 . (5) 

It can be shown that this filter results in the accumulation 
formula: 

[ ] [ ] [ ]nvnAnA αα +−= 1 . (6) 
A comparison of the phase responses for the original Uomori 

and improved filters is illustrated in Figure 4. 
 

 
Figure 4.  Phase response for Uomori and improved filters.  30 frames per 
second is assumed, so that the maximum frequency is 15 Hz. 

As will be shown in the following section, the improved 
accumulation formula given by Equation (6) does a better job of 
retaining intentional panning motion, and results in decreased 
accumulated jitter.  Visually, the improved accumulation formula 
corresponds to less of a trailing effect in the jitter-corrected video 
when an intentional pan occurs.   

The accumulated jitter is clipped according to the maximum 
available buffer area of the image sensor.  This clipping is 
necessary because of the limited size of the sensor, but is desirable 
even without this constraint to prevent the jitter-corrected video 
from falling too far behind during an intentional pan, as a result of 
phase-delay misclassification of motion as jitter. 

Experiments and Results 
Simulations were performed on a QVGA-resolution video 

captured at an indoor hockey rink.  The video contained significant 
panning motion as well as jitter.  Figure 5 shows the effect of the 



 

 

improved phase response filter on the accumulated horizontal jitter 
for the sequence. 

 

 
Figure 5.  Accumulated horizontal jitter for the hockey video sequence, 
based on the accumulation formula given in Uomori, and compared to the 
improved accumulation formula with reduced phase delay.  The improved 
accumulation formula did a better job of identifying intentional panning 
motion, and resulted in reduced accumulated jitter. 

The improved filter performed particularly better in regions 
of panning motion, during which some motion was misclassified 
as jitter. 

Figure 6 illustrates the general ability of the stabilization 
algorithm to remove jitter from the sequence.  In this figure, only 
the first 100 frames of the hockey video sequence were considered, 
corresponding to a period of little intentional motion. 

 

 
Figure 6.  Horizontal motion estimation for the first 100 frames of the hockey 
sequence.  The original motion estimate was restricted to pixel accuracy, 
based on subsampling of the projection vector precision by a factor of 2, 
followed by interpolation to reacquire pixel precision.  The smoothed 
estimate of the motion was obtained using the improved version of Uomori’s 
recursive filter. 

The numerical jitter removal illustrated in Figure 6 
corresponded to a stabilized video with significantly improved 
visual quality.   

Although for brevity additional results are not described in 
detail, the proposed stabilization algorithm was successful at 
reducing jitter and improving visual quality for a variety of video 
sequences. 

Summary 
In this paper we discuss motion estimation and filtering 

algorithms for digital video stabilization, and in particular, derive a 
causal filter with improved phase response relative to existing 
approaches.  We also discuss trade-offs associated with performing 
stabilization in-camera versus off-line stabilization of a previously 
encoded video sequence.   
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